Norms of Positive Operators on LP-Spaces

نویسندگان

  • Ralph Howard
  • Anton R. Schep
  • RALPH HOWARD
  • John B. Conway
چکیده

Let 0 < T: LP(Y, v) -+ Lq(X, ) be a positive linear operator and let HITIP ,q denote its operator norm. In this paper a method is given to compute 1Tllp, q exactly or to bound 11Tllp q from above. As an application the exact norm 11VIlp,q of the Volterra operator Vf(x) = fo f(t)dt is computed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Double-null operators and the investigation of Birkhoff's theorem on discrete lp spaces

Doubly stochastic matrices play a fundamental role in the theory of majorization. Birkhoff's theorem explains the relation between $ntimes n$ doubly stochastic matrices and permutations. In this paper, we first introduce double-null  operators and we will find some important properties of them. Then with the help of double-null operators, we investigate Birkhoff's theorem for descreate $l^p$ sp...

متن کامل

A comparative study of fuzzy norms of linear operators on a fuzzy normed linear spaces

In the present paper, we rst modify the concepts of weakly fuzzy boundedness, strongly fuzzy boundedness, fuzzy continuity, strongly fuzzy continuity and weakly fuzzy continuity. Then, we try to nd some relations by making a comparative study of the fuzzy norms of linear operators.

متن کامل

Real and Complex Operator Norms

Real and complex norms of a linear operator acting on a normed complexified space are considered. Bounds on the ratio of these norms are given. The real and complex norms are shown to coincide for four classes of operators: 1. real linear operators from Lp(μ1) to Lq(μ2), 1 ≤ p ≤ q ≤ ∞; 2. real linear operators between inner product spaces; 3. nonnegative linear operators acting between complexi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013